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ABSTRACT

 

The aim is to build a model for the S-parameter
matrix of a linear, time invariant multiple-port
system operating at RF frequencies. The pro-
posed method delivers stable, accurate models
starting from measurements as well as from sim-
ulation data. The use of orthogonal polynomials
allows high model orders.

 

1. INTRODUCTION

 

A linear or linearised high frequency n-port device is
characterised by its scattering parameters (S-parame-
ters). In general, the S-matrix is described by an irra-
tional expression in the Laplace variable . For
a limited frequency band, it can be shown that ap-
proximation by a rational model of finite order in 
is possible [1]. This means the S-parameters of an n-
port can be modelled using a common denominator
rational model as shown below, 

 

(1)

 

where .  represents the order
of the numerator corresponding with  and  is the
order of the common denominator.  denotes the
number of measured frequencies. The parameters to
be estimated are  and . 

It is not obvious to model S-parameters over a wide
frequency range because the problem is often ill-con-
ditioned. A possible solution is to divide the frequen-
cy range into narrow sub-ranges [2] but this results in
models that are complex, which causes the need for
robust model reduction techniques. Other disadvan-
tages of this approach are the absence of selection
rules for choosing number and position of the fre-
quency bands, the large amount of steps required to
build a model, and the limitation to single input, sin-

gle output (SISO) estimation techniques (only 1 S-
parameter is modelled at a time).

In this paper a more straightforward solution is used:
multiple input, multiple output (MIMO) estimation
techniques are used to model the whole S-matrix in
one step. The problem of ill-conditioning during esti-
mation is solved by using orthogonal Forsythe poly-
nomials [3]. As noise is always present, a maximum
likelihood estimator (MLE) is used in the frequency
domain [4]. The noise properties can either be meas-
ured, or can be assumed to follow some law (e.g.
white noise) when dealing with simulation data. The
noise is assumed to be uncorrelated over the frequen-
cy and the correlation between the different meas-
ured S-parameters can be ignored. Because the
uncertainty on the S-parameters is known, model er-
rors can be detected. A complete description of the
model construction and the numerical implementa-
tion details can be found in [5].

 

2. METHOD DESCRIPTION

 

A.  MODEL STRUCTURE

 

Consider the case of an n-port. Each S-parameter can
be written in the form (1). The common denominator
model permits to include the relation between the S-
parameters in the model. Thus the Scattering matrix
has the following form:

 

(2)

 

Hereby,  is an nxn matrix of polynomials.
 is a single polynomial.

 

(3)

Assume the S-matrix  to be measured or
simulated at a discrete set of  angular frequencies

.The introduction of additive zero mean complex
Gaussian noise  leads to the following model
equation for the measured or simulated S-parameter
at frequency :
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(4)

 

where .

 

B.  ESTIMATION METHOD

 

The Maximum Likelihood estimation of the parame-
ters is obtained by minimizing the cost function

 with respect to the parameters .

The measurement points are weighted according to
their variances. The weighting function  for
the MLE is a n

 

2

 

x n

 

2

 

 diagonal matrix which can be
written as follows:

 

(5)

 

where  is the covariance matrix of the meas-
urements at frequency .

 

C.  VALIDATION OF THE MODEL

 

A tool for validation is the value of the cost in the es-
timates, which can reveal if model errors are present.
The mathematical expectation of the cost function is
given by the expression [4]:

 

(6)

 

Under the assumption that the noise has a normal dis-
tribution, the mean noise contribution to the mathe-
matical expectation of the cost function is given by
[7]

 

(7)

 

Hereby,  is the number of outputs,  is the number
of frequencies and  is the number of unknown pa-
rameters, i.e. 

 

(8)

 

3. EVALUATION OF MODEL 
EXTRACTION FROM MEASUREMENT 

DATA

 

The device under test (DUT) used in this evaluation
was a Low-Pass tubular filter with cut-off frequency
at 2,2 GHz. The measurements were performed on a

HP 8510B network-analyser. Settings were as fol-
lows:

An adapter removal calibration was accomplished
[4]. Dwell time was included to ensure that all tran-
sients are damped.

To illustrate the performance of the method used,
 and the modelling residual are shown in the fig-

ures 1 and 2. Note that no difference can be seen in

figure 1 between the measurements and the model.
To show the error profile, the magnitude of the com-
plex error  is shown in figure 2. An agree-
ment better than -40 dB is obtained for the whole
frequency band. Figure 2 also reveals that the com-
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Fig 1: Model (-) and measurements (x) of the ampli-
tude (top) and phase (bottom) of S11.
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plex residual is still larger than the standard deviation
on the measurements.

The orders of the nominator and denominator have
also to be chosen. To get a first rough idea about the
order needed in MIMO, the initial calculations were
done in Single Input, Single Output (SISO) because
this is much faster. Based on this, the orders of the
numerators and denominators were set at 34 (model
34/34). Further MIMO simulations revealed that low-
ering the model order still gave stable, satisfactory
results. Finally, based on the evolution of the cost in
function of the order, shown in figure 3, a model of
order 24/24 was selected.

It is possible to assign a different order to the numer-
ator of each S-parameter, but here the results ob-

tained with a common numerator order for the
different S-parameters were satisfactory.

The selected model has a value of 625376 for the
cost function while the noise-only contribution

 has an expected value of 1540. This discrep-
ancy indicates a contribution of model errors (see

 in equation (6)). It is probable that the peaks
at approximately 3 and 6 GHz (figure 2) that appear
in the magnitude of the complex error mainly cause
this high contribution to the model order. This will be
the subject of further research.

Although a black-box approach was used to build the
model, the poles are still located on an ellipse in the
left half plane, which is the expected behaviour for
an inverse Chebeyshev filter. When raising the model
order instable poles appear. This is an indication that
there is no need for a higher order model, because
these poles obviously fit the measurement noise or
some small non-idealities (non-linearities). This is
supported by figure 4, in which the absolute value of
the Function of Dependency [8], and the absolute
values of the 95% and 99% fraction bounds are plot-
ted. The FOD is a kind of whiteness test on the com-
plex residual . The shape of the
FOD proves that only small dynamical linear model
errors are present. These can be due to the calibration
residue.

4. MODEL EXTRACTION FROM 
SIMULATION DATA

The goal here is the identification of a model from as
few data points as possible. The model built with the
proposed techniques allows good interpolation. To
prove this two models were built, one starting from a
dense set and another from a sparse data set. 

-110

-100

-90

-80

-70

-60

-50

-40

0 1 2 3 4 5 6 7 8 9 10

A
m

pl
itu

de
 (

dB
)

Frequency (GHz)

standard deviation

complex error

Fig 2: Magnitude of the complex error between mod-
el and measurements and standard deviation of the 

measurements of S11.

100

120

140

160

180

200

220

240

5 10 15 20 25 30 35 40 45

C
os

t F
un

ct
io

n 
(d

B
)

Model order + 1

Fig 3: The cost as a function of the model order

K noise

K model

Sm Sestimated–

0

50

100

150

200

250

300

350

400

450

0 100 200 300 400 500 600 700 800

F
O

D
 a

nd
 F

ra
ct

io
n 

B
ou

nd
s

Samples

Abs(FOD)

99% Fraction

95% Fraction

Fig 4: Absolute values of the Function of Dependen-
cy (FOD) and the 95% and 99% Fraction Bounds.

0-7803-4471-5/98/$10.00 (c) 1998 IEEE



In the shown experiment, 2 data sets describing a
multipole filter were generated by means of an EM-
field solver (HP-momentum [9]). A dense data set
(m1500) describes the S-parameters of the filter in
1500 frequency points while a sparse data set (m122)
describes the same filter in only 122 frequency
points. To show the model’s performance, the results
found for  are plotted. The estimation is done in
SISO and the model order is 41/43. An MLE weight-
ing is used.

As shown in the figures 5 and 6, there is only a small
loss in performance (<-30 dB over the whole fre-
quency band) caused by the reduction of data points.
This indicates that the proposed method can very
easily be used to interpolate simulation results ob-
tained form a field solver.

5. CONCLUSIONS

This paper presents a method to build accurate linear
models starting from measurements as well as from
simulation data. Although a black box approach was
used, these models are capable of extracting stable,
meaningful poles from standard measured data. On
the other hand, the very same algorithms perform ex-
tremely well as an interpolator for EM-field simula-
tor outputs.The used techniques are numerically well
conditioned, hence high order models can be calcu-
lated. 

A very important point is that the proposed method
allows for model validation and requires only mini-
mal user interaction.
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